
LINUX	-	SOCKET	-	DOCUMENTATION
Preface:	useful	macros
Here	are	some	useful	macros	from	my	go-to	socket	demo	files	I	wrote	for	myself,	which	make	it	clear	how	to	get	UDP	vs	TCP	packets.

From	these	files:

socket__geeksforgeeks_udp_server_GS_edit_GREAT.c
socket__geeksforgeeks_udp_client_GS_edit_GREAT.c

...you	can	find	these	macros:

//	See:	https://linux.die.net/man/7/ip
//	AF	=	"Address	Family"
//	INET	=	"Internet"
//	AF_INET	=	IPv4	internet	protocols
//	AF_INET6	=	IPv6	internet	protocols;	see:	https://linux.die.net/man/2/socket
//	DGRAM	=	"Datagram"	(UDP)
//
//	IPv4
#define	SOCKET_TYPE_TCP_IPV4														AF_INET,	SOCK_STREAM,	0
#define	SOCKET_TYPE_UDP_IPV4														AF_INET,	SOCK_DGRAM,	0
#define	SOCKET_TYPE_RAW_IPV4(protocol)				AF_INET,	SOCK_RAW,	(protocol)
//	IPv6
#define	SOCKET_TYPE_TCP_IPV6														AF_INET6,	SOCK_STREAM,	0
#define	SOCKET_TYPE_UDP_IPV6														AF_INET6,	SOCK_DGRAM,	0
#define	SOCKET_TYPE_RAW_IPV6(protocol)				AF_INET6,	SOCK_RAW,	(protocol)

Usage	examples:

int	socket_tcp	=	socket(SOCKET_TYPE_TCP_IPV4);
int	socket_udp	=	socket(SOCKET_TYPE_UDP_IPV4);
//	See	also:	https://www.binarytides.com/raw-sockets-c-code-linux/
int	socket_raw	=	socket(SOCKET_TYPE_RAW_IPV4(IPPROTO_RAW));

Now	back	to	the	question:

	What	is	SOCK_DGRAM	and	SOCK_STREAM?

Brief	Summary
UDP	--(is	the	protocol	utilized	by)-->	AF_INET,	SOCK_DGRAM	or	AF_INET6,	SOCK_DGRAM	
TCP	--(is	the	protocol	utilized	by)-->	AF_INET,	SOCK_STREAM	or	AF_INET6,	SOCK_STREAM

Examples:	from	https://linux.die.net/man/7/ip	(or	as	shown	in	your	terminal	man	pages	by	running	man	7	ip):

	tcp_socket	=	 socket(AF_INET,	SOCK_STREAM,	0); 	

udp_socket	=	 socket(AF_INET,	SOCK_DGRAM,	0); 	

raw_socket	=	 socket(AF_INET,	SOCK_RAW,	protocol); 	

Long	Summary
Reference	the	int	socket(AddressFamily,	Type,	Protocol)	socket	creation	function	documentation	here	and	here	(can	also	be	viewed	by	running
man	2	socket).	It	allows	you	to	specify	these	3	parameters:

1.	 Address	Family
2.	 Socket	Type
3.	 Protocol

For	many	if	not	most	use-cases,	however,	the	most-useful	options	for	these	parameters	are	frequently:

1.	 Address	Family:	 AF_INET 	(for	IPv4	addresses)	or	 AF_INET6 	(for	IPv6	addresses).

2.	 Socket	Type:	 SOCK_DGRAM 	or	 SOCK_STREAM .

3.	 Protocol:	just	use	0	to	allow	it	to	use	default	protocols,	as	specified	from	the	documentation	link	above	(emphasis	added):	

	Protocol:	Specifies	a	particular	protocol	to	be	used	with	the	socket.

	Specifying	the	Protocol	parameter	of	 0 	causes	the	socket	subroutine	to	default	to	the	typical	protocol	for	the	requested	type	of

returned	socket.

4.	 SOCK_DGRAM :	if	you	create	your	socket	with	 AF_INET 	as

	int	s	=	socket(AF_INET,	SOCK_DGRAM,	0)

or	with	 AF_INET6 	as

	int	s	=	socket(AF_INET6,	SOCK_DGRAM,	0)

...the	socket	utilizes	the	UDP	protocol	by	default	when	the	(AF_INET 	or	 AF_INET6)	address	family	and	 SOCK_DGRAM 	Socket	Types	are

selected.
1.	In	the	UNIX	Address	Family	domain	(AF_UNIX):	when	communicating	between	processes	running	on	the	same	operating	system	via	the

AF_UNIX	Address	Family,	this	is	similar	to	an	inter-process	message	queue.	

2.	In	the	Internet	Address	Family	domain	(AF_INET 	and	 AF_INET6):	when	communicating	between	a	local	process	and	a	process	running

on	a	remote	host	via	the	 AF_INET 	Address	Family,	this	is	"implemented	on	the	User	Datagram	Protocol/Internet	Protocol	(UDP/IP)	protocol."	

5.	 SOCK_STREAM :	if	you	create	your	socket	with	 AF_INET 	as

	int	s	=	`socket(AF_INET,	SOCK_STREAM,	0)`

or	with	 AF_INET6 	as

	int	s	=	`socket(AF_INET6,	SOCK_STREAM,	0)`

...the	socket	utilizes	the	TCP	protocol	by	default	when	the	(AF_INET	or	AF_INET6)	address	family	and	SOCK_STREAM	Socket	Types	are	selected.	

1.	In	the	UNIX	Address	Family	domain	(AF_UNIX):	when	communicating	between	processes	running	on	the	same	operating	system	via	the
AF_UNIX	Address	Family,	this	type	of	socket	"works	like	a	pipe"	IPC	(Inter-process	Communication)	mechanism.	

2.	In	the	Internet	Address	Family	domain	(AF_INET	and	AF_INET6):	when	communicating	between	a	local	process	and	a	process	running	on	a
remote	host	via	the	AF_INET	Address	Family,	this	is	"implemented	on	the	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	protocol."

Details
In	the	explanation	below,	wherever	I	(or	they,	in	the	quoted	sections)	use	 AF_INET 	(for	IPv4	addresses),	keep	in	mind	you	can	also	use 	AF_INET6 	(for
IPv6	addresses)	if	you	like.

In	socket-based	communication,	including	for	sending	both	UDP/IP	and	TCP/IP	Ethernet	data	packets	back	and	forth	between	two	running
processes	on	the	same	computer,	or	between	two	separate	computers,	you	must	specify	both	the	Address	Family	(these	constants	begin	with	AF_)
and	Socket	Type	(these	constans	begin	with	SOCK_).

The	best	documentation	I	have	found	on	sockets,	hands-down,	is	from	IBM.com,	such	as	here:

1.	 int	socket(AddressFamily,	Type,	Protocol) 	function:	https://www.ibm.com/docs/en/aix/7.1?topic=s-socket-subroutine

2.	 Address	Families:	https://www.ibm.com/docs/en/aix/7.1?topic=domains-address-families	and	here
3.	 Socket	Types:	https://www.ibm.com/docs/en/aix/7.1?topic=protocols-socket-types

For	additional	information	on	"Sockets",	click	the	links	in	the	left-hand	navigation	pane	after	clicking	one	of	the	links	above.

Other	excellent	documentation	can	also	be	found	on	linux.die.net,	such	as	the	ip(7)	page	here.

https://www.ibm.com/docs/en/aix/7.1?topic=s-socket-subroutine
https://www.ibm.com/docs/en/aix/7.1?topic=domains-address-families
https://www.ibm.com/docs/en/aix/7.1?topic=protocols-socket-types

Address	Family	(AF_)	Domains

From	the	"Address	Families"	link	above,	first,	we	learn	about	the	various	socket	Address	Families	(AF)	domains,	which	are	a	prerequisite	to
understanding	the	socket	types.	Here	is	that	information	(emphasis	added,	and	my	notes	added	in	square	brackets	[]):

	A	socket	subroutine	that	takes	an	address	family	(AF)	as	a	parameter	can	use	AF_UNIX	(UNIX),	AF_INET	(Internet),	AF_NS	(Xerox	Network
Systems),	or	AF_NDD	(Network	Device	Drivers	of	the	operating	sytem)	protocol.	These	address	families	are	part	of	the	following	communication
domains:

	UNIX:	Provides	socket	communication	between	processes	running	on	the	same	operating	system	when	an	address	family	of	AF_UNIX	is
specified.	A	socket	name	in	the	UNIX	domain	is	a	string	of	ASCII	characters	whose	maximum	length	depends	on	the	machine	in	use.

	Internet:	Provides	socket	communication	between	a	local	process	and	a	process	running	on	a	remote	host	when	an	address	family	of	AF_INET
is	specified.	The	Internet	domain	requires	that	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	be	installed	on	your	system.	A	socket
name	in	the	Internet	domain	is	an	Internet	address,	made	up	of	a	32-bit	IP	address	and	a	16-bit	port	address	.

	NDD:	Provides	socket	communication	between	a	local	process	and	a	process	running	on	a	remote	host	when	an	address	family	of	AF_NDD	is
specified.	The	NDD	domain	enables	applications	to	run	directly	on	top	of	physical	networks.	This	is	in	contrast	to	the	Internet	domain,	in	which
applications	run	on	top	of	transport	protocols	such	as	TCP,	or	User	Datagram	Protocol	(UDP).	A	socket	name	in	the	NDD	domain	consists	of
operating	system	NDD	name	and	a	second	part	that	is	protocol	dependent.

	Communication	domain*s	are	described	by	a	domain	data	structure	that	is	loadable.	Communication	protocols	within	a	domain	are	described	by	a
structure	that	is	defined	within	the	system	for	each	protocol	implementation	configured.	When	a	request	is	made	to	create	a	socket,	the	system	uses	the
name	of	the	communication	domain	to	search	linearly	the	list	of	configured	domains.	If	the	domain	is	found,	the	domain's	table	of	supported	protocols
is	consulted	for	a	protocol	appropriate	for	the	type	of	socket	being	created	or	for	a	specific	protocol	request.	(A	wildcard	entry	may	exist	for	a	raw
domain.)	Should	multiple	protocol	entries	satisfy	the	request,	the	first	is	selected.

Socket	Types	(SOCK_)

From	the	"Socket	Types"	link	above,	we	learn	about	the	various	"underlying	communication	protocols"	(emphasis	added,	and	my	notes	added	in
square	brackets	[]):

	Sockets	are	classified	according	to	communication	properties.	Processes	usually	communicate	between	sockets	of	the	same	type.	However,	if
the	underlying	communication	protocols	support	the	communication,	sockets	of	different	types	can	communicate.	

Each	socket	has	an	associated	type,	which	describes	the	semantics	of	communications	using	that	socket.	The	socket	type	determines	the	socket
communication	properties	such	as	reliability,	ordering,	and	prevention	of	duplication	of	messages.	The	basic	set	of	socket	types	is	defined	in	the
sys/socket.h	file:

/*Standard	socket	types	*/	\
#define		SOCK_STREAM													1	/*virtual	circuit*/	\
#define		SOCK_DGRAM														2	/*datagram*/	\
#define		SOCK_RAW																3	/*raw	socket*/	\
#define		SOCK_RDM																4	/*reliably-delivered	message*/	\
#define		SOCK_CONN_DGRAM									5	/*connection	datagram*/	\

	Other	socket	types	can	be	defined.	
The	operating	system	supports	the	following	basic	set	of	sockets:	

SOCK_DGRAM :	Provides	datagrams,	which	are	connectionless	messages	of	a	fixed	maximum	length.	This	type	of	socket	is	generally	used	for
short	messages,	such	as	a	name	server	or	time	server,	because	the	order	and	reliability	of	message	delivery	is	not	guaranteed.	

In	the	*UNIX	domain*	,	the	 SOCK_DGRAM 	socket	type	is	similar	to	a	message	queue.	In	the	Internet	domain	,	the 	SOCK_DGRAM 	socket
type	is	implemented	on	the	User	Datagram	Protocol/Internet	Protocol	(UDP/IP)	protocol.	

A	datagram	socket	supports	the	bidirectional	flow	of	data,	which	is	not	sequenced,	reliable,	or	unduplicated.	A	process	receiving	messages	on	a
datagram	socket	may	find	messages	duplicated	or	in	an	order	different	than	the	order	sent.	Record	boundaries	in	data,	however,	are	preserved.
Datagram	sockets	closely	model	the	facilities	found	in	many	contemporary	packet-switched	networks.	

	 SOCK_STREAM :	Provides	sequenced,	two-way	byte	streams	with	a	transmission	mechanism	for	stream	data.	This	socket	type	transmits	data	on
a	reliable	basis,	in	order,	and	with	out-of-band	capabilities.	

In	the	UNIX	domain	,	the	 SOCK_STREAM 	socket	type	works	like	a	pipe.	In	the	Internet	domain	,	the	SOCK_STREAM	socket	type	is	implemented	on
the	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	protocol.	

A	stream	socket	provides	for	the	bidirectional,	reliable,	sequenced,	and	unduplicated	flow	of	data	without	record	boundaries.	Aside	from	the
bidirectionality	of	data	flow,	a	pair	of	connected	stream	sockets	provides	an	interface	nearly	identical	to	pipes.	

SOCK_RAW :	Provides	access	to	internal	network	protocols	and	interfaces.	This	type	of	socket	is	available	only	to	users	with	root-user	authority,
or	to	non-root	users	who	have	the	 CAP_NUMA_ATTACH 	capability.	(For	non-root	raw	socket	access,	the	chuser	command	assigns	the
CAP_NUMA_ATTACH 	capability,	along	with	 CAP_PROPAGATE .	For	further	information,	refer	to	the	 chuser 	command.)	

Raw	sockets	allow	an	application	to	have	direct	access	to	lower-level	communication	protocols.	Raw	sockets	are	intended	for	advanced	users
who	want	to	take	advantage	of	some	protocol	feature	that	is	not	directly	accessible	through	a	normal	interface,	or	who	want	to	build	new
protocols	on	top	of	existing	low-level	protocols.	

Raw	sockets	are	normally	datagram-oriented,	though	their	exact	characteristics	are	dependent	on	the	interface	provided	by	the	protocol.	

SOCK_SEQPACKET :	Provides	sequenced,	reliable,	and	unduplicated	flow	of	information.	

SOCK_CONN_DGRAM :	Provides	connection-oriented	datagram	service.	This	type	of	socket	supports	the	bidirectional	flow	of	data,	which	is
sequenced	and	unduplicated,	but	is	not	reliable.	Because	this	is	a	connection-oriented	service,	the	socket	must	be	connected	prior	to	data
transfer.	Currently,	only	the	Asynchronous	Transfer	Mode	(ATM)	protocol	in	the	Network	Device	Driver	(NDD)	domain	supports	this	socket	type.

How	do	they	work?

	The	 SOCK_DGRAM 	and	 SOCK_RAW 	socket	types	allow	an	application	program	to	send	datagrams	to	correspondents	named	in	send	subroutines.
The	Protocol	parameter	is	important	when	using	the	 SOCK_RAW 	socket	type	to	communicate	with	low-level	protocols	or	hardware	interfaces.
The	application	program	must	specify	the	address	family	in	which	the	communication	takes	place.	

This	is	the	general	sequence	of	function	calls	required	to	communicate	using	 SOCK_STREAM	(TCP 	protocol)	socket	types:

	The	SOCK_STREAM	socket	types	are	full-duplex	byte	streams.	A	stream	socket	must	be	connected	before	any	data	can	be	sent	or	received	on	it.
When	using	a	stream	socket	for	data	transfer,	an	application	program	needs	to	perform	the	following	sequence:	
1.	 Create	a	connection	to	another	socket	with	the	connect	subroutine.
2.	 Use	the	read	and	write	subroutines	or	the	send	and	recv	subroutines	to	transfer	data.
3.	 Use	the	close	subroutine	to	finish	the	session.

An	application	program	can	use	the	 send 	and	 recv 	subroutines	to	manage	out-of-band	data.	

Possible	errors	returned	or	set	in	the	 errno 	variable	when	using	 SOCK_STREAM :

	 SOCK_STREAM 	communication	protocols	are	designed	to	prevent	the	loss	or	duplication	of	data.	If	a	piece	of	data	for	which	the	peer	protocol
has	buffer	space	cannot	be	successfully	transmitted	within	a	reasonable	period	of	time,	the	connection	is	broken.	When	this	occurs,	the	socket
subroutine	indicates	an	error	with	a	return	value	of	 -1 	and	the	 errno 	global	variable	is	set	to	 ETIMEDOUT .	If	a	process	sends	on	a	broken
stream,	a	 SIGPIPE 	signal	is	raised.	Processes	that	cannot	handle	the	signal	terminate.	When	out-of-band	data	arrives	on	a	socket,	a	 SIGURG
signal	is	sent	to	the	process	group.	

The	process	group	associated	with	a	socket	can	be	read	or	set	by	either	the	 SIOCGPGRP 	or	 SIOCSPGRP 	 ioctl 	operation.	To	receive	a	signal	on
any	data,	use	both	the	 SIOCSPGRP 	and	 FIOASYNC 	 ioctl 	operations.	These	operations	are	defined	in	the	sys/ioctl.h	file.

That	about	covers	it.	I	hope	to	write	some	basic	demos	in	my	eRCaGuy_hello_world	repo	in	the	c	dir	soon.

https://www.ibm.com/docs/en/ssw_aix_71/communicationtechref/send.html%20subroutines.%20Application%20programs%20can%20receive%20datagrams%20through%20sockets%20using%20the%20[recv](https://www.ibm.com/docs/en/ssw_aix_71/communicationtechref/recv.html
https://www.ibm.com/docs/en/ssw_aix_71/communicationtechref/connect.html
https://www.ibm.com/docs/en/ssw_aix_71/r_bostechref/read.html
https://www.ibm.com/docs/en/ssw_aix_71/w_bostechref/write.html
https://www.ibm.com/docs/en/ssw_aix_71/communicationtechref/send.html
https://www.ibm.com/docs/en/ssw_aix_71/communicationtechref/recv.html
https://www.ibm.com/docs/en/ssw_aix_71/c_bostechref/close.html
https://www.ibm.com/docs/en/ssw_aix_71/communicationtechref/socket.html

Main	References:

1.	 [my	answer]	What	does	the	number	in	parentheses	shown	after	Unix	command	names	in	manpages	mean?
2.	 https://linux.die.net/man/7/ip
3.	 https://linux.die.net/man/2/socket
4.	 https://linux.die.net/man/7/tcp
5.	 Titre	lien	externe
6.	 int	socket(AddressFamily,	Type,	Protocol) 	function:	https://www.ibm.com/docs/en/aix/7.1?topic=s-socket-subroutine

7.	 Address	Families:	https://www.ibm.com/docs/en/aix/7.1?topic=domains-address-families	and	here
8.	 Socket	Types:	https://www.ibm.com/docs/en/aix/7.1?topic=protocols-socket-types

Related:

1.	 What	is	SOCK_DGRAM	and	SOCK_STREAM?
2.	 when	is	IPPROTO_UDP	required?
3.	 IPPROTO_IP	vs	IPPROTO_TCP/IPPROTO_UDP

https://stackoverflow.com/a/58496243/4561887
https://linux.die.net/man/7/ip
https://linux.die.net/man/2/socket
https://linux.die.net/man/7/tcp
https://linux.die.net/man/7/udp
https://www.ibm.com/docs/en/aix/7.1?topic=s-socket-subroutine
https://www.ibm.com/docs/en/aix/7.1?topic=domains-address-families
https://www.ibm.com/docs/en/aix/7.1?topic=protocols-socket-types

