[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Problem passing Array of Structs to external library
[Thread Prev] | [Thread Next]
- Subject: Problem passing Array of Structs to external library
- From: T Lee Davidson <t.lee.davidson@xxxxxxxxx>
- Date: Wed, 3 Apr 2024 13:00:05 -0400
- To: Gambas Users <user@xxxxxxxxxxxxxxxxxxxxxx>
I'm working with an external library that allows to pass an array of structures in the extra arguments of a variadic function. It does not work well with the array of structures that I try passing to it.
With a C structure defined thusly: struct OptionItem { int option; intptr_t value; void *ptr_value; }; ... it does work if a C function passes the following as "ops": struct OptionItem ops[] = { { OPTION_CONNECTION_TIMEOUT, 31, NULL }, { OPTION_CONNECTION_LIMIT, 21, NULL }, { OPTION_CONNECTION_MEMORY_LIMIT, 11, NULL}, { OPTION_END, 0, NULL } }; Isn't that an array of structures? Strangely, if I pass it just a single structure (instead of an array), it does not complain but actually parses it. Perhaps I am misunderstanding how this should work.I have taken source code from that shared library and pared it down to create a small library that demonstrates the issue. It, with its source code, is included in the project which is attached.
-- Lee --- Gambas User List Netiquette [https://gambaswiki.org/wiki/doc/netiquette] ---- --- Gambas User List Archive [https://lists.gambas-basic.org/archive/user] ----
<salt FCKGM-0001-E1E3-FD4A-3A70> H4sIAAAAAAAAA+w9C3QUVZavOgFCC0lQmImAUgQZEgyVquo/EElIOnQ8+Q0kM35gm0p3JWlNf+yu hgSMhsWoWcRhHN1x1x+r4xmGVZezszPDrusaxBFQZ82On8XdcU/mDGpQPIuLunhgyL5X771OVXV3 PkMM42zf0H3r3Xfvff/77nv1+sGVNkqdHlnyy9FYaZMcUyrDwaAU8gd8UgeYJOAh2K1WFUMwYl6w 8ECw2nmLhRccvB1AgmgXANs5WRkYDeIxRYrCrExFWn+EYOHZoBIIymWCQxAFu+CwWDnRCVtDEG12 s+hkJV0sb+FsPHy22M1Q0pde8lKXKwPjA8OQL/0q0kBj3GGzISw4bHjcCyP2QLUF+vFvtYgiYG1f RWaMQMd/PCZHR+eDFnKUeKNx+5qAsf01swHnC4dCMhzj4dDFpTE++28THaIo8rwI299msdgy9n8q QHQl7D9sJF50OkXO4rKJos1pQyZeZ/6tvINzCILAC3aLxQxFfWlFL3W5MjA+MI5/zaCftLlgfPZf O/7t0ABk7P9UwGj2v0MKtU1GGmPZf95hBYLFIvIO0QatC5r/oQ+Zsf9TAToTz0MTbrNyVgE2lws6 YRof3+4SHRaHzWXjBKfdyTt5UcjY+D8BSLL/aNBP8ipgXPZfN/5tFsGasf9TAaPZ/1jUNylpjO3/ i4n1n91qQfs/DoclY/+nAoz7P3aXi3Pa0WC0ipakBQB09DkLfHSJLqc1aQdIL3upS5aB8UCS/YeD frI3gSay/4PHv02wOzL2fyogZftrJoE6KRDigmF/vEP+g9OYuP23Q+czY/+nAiZu/+EaQIQLAGfy GwAs64CycCWRsf9fC0g5/idj0GtAM/5T2X9RgHODfvw7RDtc/0/JmPx/bv+XseukYIsUY3Fzs62B Dtlsrg20RKVoF1vIlUakKCx5odncGG/pCPjYDUo07lPYhgjaIqxR5KCZZcNqgK2IsTUhRW6To5C2 ReqIy4hUGw61sZAQUaLeBLExHICcUbM75CcaEwm4O2FEiFVgxywq1urUx6v58uKUY0WBimhU6toQ 2CZrJEpYjuN0KhI6QvEg29DYVNNQ73XXV7FlLF9Cw5UN9fXuSvWxzl3XsP5Gb21NXU0T5BFS8dBI MVVkU02du6EZRVsS0RXr11fciLTZRuo03sKiMVdUbIYVVRUIshKu3xjKfL28VVPdN28iLO0NiVrX NQb81xiFtcsWrtCAWp+sllKYYMRVnVouGTaGCnEq1eEo26mpXVRKtinM8rBF5Qi7QoA8bCKbZYZy aCO5MOXp1JFxd4FUdjkr8Oy1rE4lN9KjytiGlltkn8JV+P1RORYrIizFKj+tTBSrjamXO5WRorgl X3vqSoUFTOhQFeJ60me+RJ/rkuRc6lIkVb0xRNtH7c9kJMUSDVWIOsQywq3v8olSVYbjIUXfvUoS +S3RdPNiqKmpPRBj/WE5xobCCrs1HL01kZk/RP3N/Kb0KaxgY+GowoZbUZHhSM+4BH98MNr+T3vA 75cv8t0vgon4/zaruv9vtVgz/v9UQJL/b7FwNqfdxfNWhyvJ/7dbrBwvik6H3SU6k/1/neylLlkG xgNJ/j8e9JO6BTSR/R88/m12C5/Z/5kKGM3+b4HfF334B0zM/pPzX3ZH5vznlMDo5z+TDgCJLs7B 21yCxWZJtv+ZE6BfP0iy/5M16DUwxv4PijWMfzt0ITL7P1MBPMdzoutS5yIDlwpGmf/xzh8XC19s GhOY/6GfiMa/jbfaM/P/VIBx/hftImeB07zNygvO5PnfInB23uUUeLsr+f2/XvZSlywD4wHj+J+0 Qa+B0dd/Im8TeMP4twt2e2b+nwq4011bbWKYRDgLXAcYTXw5wfcWaGlOMAN+LwGFKu+0UfT/s1mP QT5GSG46/AzNxuGhq/S43ISxx6SXMxG5s0Tu7FV6PMDocQ4Rzyafo4RuxNcAPc4muPF9xY+eX5+J w0ZsBXpM5b4N5aaD8QMpHlhP0ktXLwUmPaZthWTmAtR+AKyrbwaF797Z990lVf1VrcLrG3temLPq xwMiIPFmwo+KoM2jtt1nAFx3JiJD2ziLxNH2Q+ElOZhGqgQsz+/9gvFUrZDbH799tPKyKejb4efy FHQlDZ1Jo6ckDb0afgpT0JtV/bPBNlIh+wndR+jXzMDhH5FK6iH0o6SD3UcVeb1twXDIi6yK4vUC b01TnRe6U3JbIKbI0aa6yo5wSG6SWjpkHJc6xuvrlLytgZDUEdgmA92bGX3Iu0UCEfT6phVE4koM oHd5oCPQ4oMmnLODdbU1ayu9IidyNlxbJvjHqJhJ/PWCkf4Xnx+YiVr9eyRM+x0dRxFSP6cNdJ7Q WVZPp+GjizCeDvT9bEBDz9bQj2voWvsyqKHrxhdJBzWTSUPO0dBnaOj5GnqWhl6goedo6J6dp3I8 u6Y9Nh8+9vYrpuEBz86Xcw6DYdt+SBpe+gz8zltUDp9QuB2JnBwchrD0SRRGRT45oIb/GoVRFk/2 q+EHUBhl4eQBNXw9DLfuSaS7u2wHJDR7dk/rQmm7znr63leuhFkxk6zM3jQ82MrlLbpL5d90uHUk kLcIyVcgxt22laqa4gtQ3nPoQpan77Tn0NAaD/OK598uKAVQ4bErscJZSGE6fT1ln0I2EC/17Cx7 Aj01o/zM8uwq+zUMDZXBEgx54Ncrqjpm0+G8RT1I9MxhqLIKs2862Qo50JNnx6lBGNn3QgkkePp+ doOKHtqsot3tENX29UZUtLsTorv6FTav2N2TV1y3J6+4eW9e8aYDecVyf15xcCCvOD6YV9x9+kgv DzlR2x3ptcInXq1Fd76nr9eJ9O7ubVTV95aroYcQ965enIF3+o4M3XJheLivt1alou9jh9Wc7jzF 9nWf8vTFB0+ugK25y31259m8vN558Nmzyz24C+w8W7r1GvTo2dWYj0l9/R5mwLOreXDX5buvz0EP feaP52Ke8hzPbo9K8/ShOODpc58+4j6v9pzvA5zCELPzrGmra5f7vMc34Okb8DCqxkODsPlegnpO q/obcyBv3yuwqe+HuTmINAw9+Pvh4Y8d4xbsTgjeDAV3us8zUHSV+9Qd5oMfwr558hE1Q6Mog4WF +e0+C/J6K2GlfTwLKm2ESoc+Pg8r9uIrSKN/xwXUbmXTkfbdUDvMV6KNIkfce9BY8hxxP7wI472o WEfc+0w4eGAexgcxuZ/BwaOXYTyAyccBDg4SPITHonvPP6oPfS/9Sx7ELyKLhattLsxIn/u8mhfV VqjWAYA6SfG1s+FW8mZ/JbvUX8JuDSjt+IAMCqueUX0DGxwPa30Y88l+elaAA9WBUCDWzgFmQdYq 1NuRvVTOwUED8csQo7nzOZg/NEfdAJv3GYjPw0p8HWCfAQGzbT1gOvOZBbNm5OxhsB+0EH5YKN+I GHLzq3MLrs+7bGtOD1gzf9VyyzXqNIrkq1CVnMNjjgKS3Qg/82G66lxakZt/t6ly9nTT0zAFHI+c gx/BeHVOpfFZTzCIAcU/Cj9FF3C+R+TvUeUzkIEMjB+o30b9NOqD9RI8i+Ai4myR5QdoIk79lSRM /cEFJEyH4nyCqV+40BBPfbvTJOHPLwyrWww8cdaoj9dInDHq220m8XT5+AjBlxFMl6XUhxsi/iH1 ATcTTO0c9QG/SfDRbD2dzdbnex/BdG1D04NmKawt2DAJ03o9TcKnSMa+JGGtrzmVQNfHRvgOqfhW grcQfDfB1H9fV1m5ki3a0LzBzdYGQvHOYtbB2TgerAa0rnGN0f5D12q0/2h9ey1g+cKE/EoiT/vD DTP1YSNcPZK+dlmh9lc0LzE9mONylaMF4B2N9ToOZg7In948PSt3Qe7S3CtQSsmUP1O1oFUlw5zL NcNvddOE4bjSWFfML0dipZ1Ou9duhUvGqBLgNuCeMNNEKyTrEGBqoitLTHDlxUA6rZisNwFjyoa0 myaUQmgkBVplWcsYj4nB2mm1ZV1LaElaSkk2S9vDQblUaokHOvyl0UgQP6xtrqmtKm1DC8kVImcR Sn2xONpXYCs2sCJnFWDLp9SIsqWDYQI0TKuDZppWA82wEYzyVG7NNL3cpjTy6QDVXTb4dNhIR3bQ BK3fXkOHyyX0QQN9MaHzhs0eh5pGAShiR9JDUK0+X5GwkxSCRE/EoKdL5b88YXcpPJwm/+nK9Tdq 3BxwMMW+fCr+v1Pzk5toHwo/U/V8M2EXKLyk0ucm2ZnX1O/8xH4Zhf8iemj9UPhIpX8jYccTwKD8 mBP9hwJaBRhUqFDIpN4vsjCp93kq0vA3pdHvY1LvCylp+NHKLNW+00+YNPtIcDDFlDhcfPvAyPaR Vwl6fWibKAa8Xn/Y29YRbpE6vH4lHI15pXgn8IWDkQ5Zkf2cA21Cp2RC+0oBr4QOzHvlkBLtAq1R KSh7/fFgsAuKaEJeyKnoWMn7AR/kq15fUedGp37RNhfSiZKLhb3tUsiP9rCqbqyvqKuphFRoOLxu DxHwVK2HpKa6Siq6rrZhbUWtt6G6eoO7ydtUsbbWDako5VF3z9B2V7l2f8uwS6ZuiukYDFtzSfto 492P0ylVN9wAF+sKKlILxEoU43b6FAorMtcWinOqZV0R8AM11C7F2gHn7wpBSYyVKI6hJzC0AS+M i8odEmIkT5EOBXBqLaFHri0MHxS5E36rbcFFw35JkQAnt5MWbfdHR0JYFDctlqDPMAUpGPABpBEn gvW0xGKAg/0rCDsCpMkt8TYoIoXaYGckwUCoNZyIammJyltoqCMQkumzWlD8SMQnAZA/qt37S7e/ T8Hoj6DN8WkaeeqnUrzaIGf0azn4+QL6eFSe+rUJnEaeghNgnzbht5r0+DShq96JRp76o+UA+5ZU nvrRFFO/mQJjCHsA9mGpPPVbKab+M82/yYDR/vkFjXyCkWA2Tf4p+Akrlad+OMXUDzfWHy1/iMSt JWHq11O8WSP/jRTynWDknQYCOs9QTNcLxuJRiBnky6fpcaOBP9+A7zDI75mmx8b6yjHgewzy1H+h +B8MC498fRDsNsjTeZ9io3tlLP8PiHyi/87UY+NlosbyPGKQT/eeLV36PzHIJxaM9P3jGOn/FGAf L7GOpO/dZqfmN9b/i/CTp5Gn/t3pccojP4m+T0OQeK9J5On7zGkGOdqOfw5w+ak8fd9yNA9jdoz0 3zLIU/9riMg7x5B/zyBP/UM2X89nlKfwO0Kj8tQvLEojb7RfQ4RmfPFO5QsMdMaAP02hE0E5ke8x 0I3jBwmnku8njFVp0qcwK4189hyMjfOXkXd+GvkiIt8/hvy3mNT1N0Tkb00jT7GQJv3NxKnuMdCN 9acbuxoYJPIHSSRab6G5yGi/kZlItbfy8DyMnzNkzpjXOWnkq4nhXzOG/NcVRr3/BznK8chFpzGR 8/92q3r+3yFkzv9PCSSd/+dFzsk71Ms+k3//pcbCxrG5RGuK8/862UtdsgyMB5Lvf5ikQa+BMc// 2x2G8Y+eM+f/pgLQtQNm0gHQzr7Moh7BrpX95iWGvmHmzfjXAmZzZnD/qcDY5/8v/g7ACZ3/F/Hv /6yZ339PCSSd/7c4OafdiW5itluT5n90O6zgclngH+9Imv8tTgfnUv0Al5C5/+/rAWnO/0/OxZ8E xpj/LQ74rB//NvX+z8z8/9VD6XIzu5yFPSAS6JD9+LhZm8+H3+6jKBRYAf+1RgI+lvaORESsXYpC sRVhNvHDEfoUhkylZvOSQMjXEffL7OqY4peibVz7dXpaIKQYaF2xUqUrIseSWcOIZF7il1uRp6K7 UEmwGekp7mGyjMKDL3ISR+HQXQclGBnRPVK82RxLuh9ru5ll0f06+E3TKhxCtwIp+GAfomwJB/zs 8sRVQavM3augl5V0Kw+MZYsQ1Ycv5dkieTsC0F2TIsWrUrDreNFdWGpeRoRIXtiorKwy4xjV/WeL pEgJlitGPDCeLUuRE6JZTV2VlqETWUSCUCgeDWHd3RMsjLbOaCYD6CGpdtnlYUnN+9Z22IHZIk1j LC5ji6A8zDlKpRjph/0Plw0RivHtUNvVb6ga9n1fuypSTEgjkSzrk2L6HrcyEYUgLMF0tCkk5XS5 WisjEEC3julJo5UhLN0c2ETumiou1onpM0ohZXlGFzGWM03fXzkRwYlLkMGaWgZBaSmrHqstYVvi CrtVZv3h0DLYjaAp4tIK4ffBRYXjOJC7MVRYgqJLSKWrEYbW00JLVJZuTR0NTYQU71DSl4Vma3zn fyeSs+4kauDaa5NZA61weLDXkdFOR63L5Upm1Ws0lDplSdE7eli25DPLhZpMY7XoG7OT48yFWisS UG0IvayOLcIWQm+9UlmHcCR28yY4ejD39vS9rYS1CCVsfXNtLdtdkpZZ7cwlrDgOVu2AKWEFImEU gGO8BN09iLXhiiCFSWF0i6zGe9hg+XT3r43IamzvaPP/aPu/AR+6vu7i/w+Qsdd/QmL/RxRteP9X zKz/pgKM6z90w4vdLrgEm0uwov/iyfD7b56DHE7osVuSln960UtdsAyMC5L2fydr0GtgjPWfHS32 9OPfzlsdmfXfVEBfY/262eb5aLjOrkFH89Q3mwzIQYcRNkb3tUI0M+K5ERY992X0YR66NncBZH62 pqqiqfPRT947Fnvkf7uPfPrGmc0zPPkb3d9+cN97Wzb+5/qFT/+V81f7HuPqH6388ZvbHng0OnTi nTv3/rD2Qt/VYtnBx+pzj/lP7fQ1fGwN/uY/fG/vf/K9B9zLHzxYWlgeOXRhddnR9S8/+6RnT17P f5+LZ1cM3sM87rjjDXPqM77lO6Nbzryx5vy7nnXPnFjYfPTYW4HVxxtsa777F18+tabrzMstA5UV /EvPf/nhwx8ujFf+a96JodoXpt/VPTfKHVn9wtKT16PoLfNAV/0Hu3qHb99UvfP37w/9dnvOT3+z dwZgndmAvw+Au+eAft4ECqoBOJwDNhcwYNYS0CNNVuTPn/fOqI6deei22x/78vknLnBD39+87JY7 npt7Zt2d//NB3y8fuy6bOfDJvt8Nzbj/qY0DWYdy73r0NaEhXPNPf//mPSz4S9ernpVXfMYfqLz/ mjeOnfpg8fHpE8vLjsdnF2y5aumTzxUuXnZUAjv2vXX7vFcf3//4ouMFptnlhR991Pit/Urh3BN8 T/mJy2x1J169afk7pgWVe5l771r49BWL47+47UbTcevzc0+d+mFwEivlK4g8EBnIam9es+1OYWhx x2tf/uC27k/am/ruveKzxnzQCl7pFm/69bKn5HnL74B9AuT03PbL/cNO04F7msG+Gz7//InD7pqW eH9BK+i8721mew642hfvv/o7zBfvfu/Ft+d8lm99/sTJ9x6ZtntF0/vPnlvwt1k/57P4fb/41dve 1Yv+/bfPPXvujY96Zmf3s0f+j70rD4dy7f8zUlmKspa1EjIYy8wgjK0pyWTfYgxCthiNZewcJW1I kji2KBpb1iYmgyMUyW4soUVkyzoIY37j1Lne8+b9dd7zO+fqvd7f5fPH81z389z3cz/PNfd3ue/7 M99v7I72g8Gjusw+Yoo0pkJl221A2cYL90m+5kM07Klj1m9PqzPFmO1cf693NVHj+iFAfZGyLT9Q NroL2N/D2soglNe5UDN1y6PZpNR8qI1eUWjqYA8mqnDpPrfcNmdsrqON8Gvw2KIQeM3Z+iUgqce1 l1w1AP40pqhuyQ90NlqVm9KesOdOZ6afK2W3OcsjVw31GdOvqrr3TZ9UhuzrSoPzGoP6kuOI58pv GeUeAJx+59IRQr6wgLJ5gucNmVRnaGVMVZjCHeYJmWQCOnvyZFGZ2IDOtsjVIjKTxsWzfTFUDcDi GfhjLITewZ4wsdpSYcoz8YdXZelF+gty0CvyMmlw2vbFVP6Sja+Rm2pAn91R2JJn3Ztlki/Bw7Yd vuv8T4+4JiVaRpPrTpwAFGajZpu0om6YAi5iI4rFsLkVcvEdKb1P5+qKQTCbosJcpHzO+4EpZcXO zE+P7/bZx1rDEyaUcwJI4IE0snnMYvcYdzqaKewgaXpibjkcfOOV27Amuquvb8y/yLLDm5Q+FqSZ UC/80dsmEq0ymN0RPGYNn27G5w1WHdUE8O0BymYYzS+0DZyhjnffNmuMzx6sssCPjT8Lry9uCqBG HFNB+2mPJCy8KpOTTkhdT+4JZawOc23uIJLrKW+fL0BoGN+yPBsUKTtC60wodiU9496Uu0LOZ9Kn lyOUGOHQgqRRyb12+hoiZ0XSgbzTLRO1xBbSjLpRgf+Ks5+ZolhJf0Vo85KPvXx2mg2faXPgk6S9 veeUCqv8zC1f+/maCke/dM6VvOL7LJP+KprB758BI17nE3oe3ZYMoI0MPwYjAoLlc3EFg+RfXMdm 3Ytk45pPPCO2/5KTmn3dfj7JUur8shUOlKWIVs1b99bC2FRmq5T4l0dnpj5+ciu2sL5Yci7N4nWw jlfTdurSzI31j8M/nU7D4E3axHGjC4PNs7tVaNHeYhPLjQYyLwGWFr4P7hPndfk9pq9oL5g7XV5o tM0O8Q9G1pb46xiZg7KmSQFI9aCp22i+j68X5B6dPmeaE8DvkYZCdamYfxozJ4iL5qd4Kt2KXno8 vUJJX2fSYG3iASU9z/d4Qn1QA075pOtWZNGWn1jXwOomz9euIYY3kSr+UFAVhM+LiG9P6gfHyHxM k9k1Medn9qGvXumkkT6IlEsOr6wBabBagU0V4FxLa/iQCGvz67mOXanLqwhfUwxtMTXalzDGm6At HOLzaHUp6F7Gaq+oaObBgRbwRNVlJ5gqofScjx2cfIHL93OBC4IxPcL08bLCpyvqqhUy3Fari+Qg m7TBNHL20uiHk43PMkFmriAzt5hp45yACj/aTwVIB0rvwiIY41sogl/cJ1x2AnHH6u778yRTWlt+ youHO5QVhpRGKwrYHG+dQpA/VS0F2dR66fajl0XHHDBEZeM29yHh1UhAaaGz8zwAOSL8iZuJWEBa irfnG3e1KmGV5fGllN3zSBk/7fYANdC1D9VgCOKx407XlJNxs2t60Mw7yIpzgnkuPtSKzqxBnhoK ptxV+xltMnYdH6Is1Ka7zTpgtRFuqtD7jialzLFXcAw5NS5XiGPSuJ7jnxpC/dyZFbo65aDXEFAS QPFMOIxXTzEIVS4aUaN5YdCKTlji+vZ33qoZmtFAZwvG9O1dQTY0bztEb9dcVqiNtOnCvC6urBDV KRlJ7NwbA+LDmuZ137aWnhgfDl+njCCs67FPVfIdLsWcyXyX4qK5JCTlho2j0vRBpvBKnBeKnFWs nKyTIy1kWGDQ9nHt1gh5anRIQru9/F5qhSrP4g6gs2ZVYGEeym4eQ6PQhylfU8HkC6WAPg7lmyOA 9BP1Wb08JRZH3BxCLjQD1TQ9BbVH9QVvEusKTkJ3MLSeNWs0bR6ZgEQMRZEWn0Qvea6FZooApLNQ lFJU7wBp1drrPu8KZFynLlxwZ+o1QOndpNFcFN79SaWIYZXIrIDOQbJpoFRGq9jO5QVCA6XrnlBE OdPJWnsR2+uzlJk9tqEDCmHqoSEa5OzilSBfHRjGaefSJZR5pbvcbp8y/CN4AV3dmIuXWIY21vTW wvmjJTXsDwGkxSaVr12yju9uZqDLpmJVEJLgxEOZaMmGEkxed2uqvb2ZyQl3SZk87VYIwSMPZSFV M1BFGUO79DF+qYsWiCGlNvMG80uVCIAlUkrASJmnC+U4ZRpWoD+y0BxHXanNrNxQjqh7GbGfRYMV 4juM8HOeIwckuHfnqqe0vhj0pZTWdfGwS06uhYCmP5PqecwoHddFGnm70WOKQmxjmFdsF97oc75N cZVzny1k8z0MrUJZzO9Ok7kDK3uSc1FQh64xChxMrLUrfD6dJNyPrNpf2NV7Ub8C8jNZ5lGMm0f5 k5HFm+8/Tr71SPk4MIBhsg0tis+qKz0uorxQp7V+/3N8cYGeA0FV7Y0La9X0aoVcSkcLOMpVlVBs R3lrq200qk+R3P9B5UHijEfZvoZY9Mfp1rpVdihhbbUrLGl0TLG2Y9z1+tjrWCcVVRzIprUB5+Rj 5+3Rcf3Gfc69wTTJhi7yK8PQ5suA0vTaFInKoCOZoVWVvioa94w2dPTw87bEmlfZqZlp9MFZ760n HPXSWcymxzvTji4i/DZ8nTVsj1cURRhaM9aXOzWDg3BmET5WY/N11wZJWH1aYCjaRn3DZAheu4w6 Gj38wvzBuIsH/iG7h/5YzSlDL906aZmFxGsRlOwWdvr3f6L66fRsY0w//uCsHXWKrD9hozbgZznj Wp5jBbleASuhNgXkkxOvjMvY7G9vilSoClJK2sYPtOoxMD+Feeq3PHtcY6ImNtMePrUyUdJgsWwF gITx8GCtK7EPjRMdELSZt1OnZfau55H858LQKm0NF9alwwGlTzyfd11NLV1fpyRQBqMuRL38UGbR s67vo4K9rYOA3tQZ75dh8/DntoOKM9gicPJZ05UBSEIWr49XgCFudD7JRuLFvAJNJ4Yu6uveRtrK ccq9P3fjt7mU84fMsjdHA/Zx+FpTazSy9ShZ8dK3yyyk3EDmrUblOa7NxkrDIG6frp9PHYm7BuLe LSkYA1qjrbnKJtFdmSM8zHj1uZlT1S0UH0a4AOOVyu95cO810oMXM5dwISxgA8zLzZ5dJSBwuGHo HdQKqnbuh/iQGqECpUbz8TKd4QIMe+4G3cs61czuveunHekGi9BYSTffF8zYfRoH6M5JRDHvxw0P umu+zMRhB4Ax4k96x4+JJUBrdfGWcqlXI9sX0x41YamvPYTOmgOPlK8752UQuLDyRH8BgIrBvNeD QnW+hf9l0jl5lbYNP6vGn+i1s3SjrHNcD1GgZRv+683vrf95YjEbSTX+8hzzz/A/f4v/DNta//sh +HPxnzfd3Yr//F+OTet/f5fQ/w5/xP+EyMl9I/8wRYWt+M8/BCK/5f8y+PK7HzixsQUNAcuymLh4 n3eE/2tqqPEXkjD8V/ao2Ze/qMK/kkNN7M5u5OGCy7Mg7Tzo3piTI9zRw8bUmAXpYu/o4eUI13b0 cMTanT/wNfnV18ssBnb2bvTKenZ0hbKxyWf/j1EpvfFo6G81sHA5FmN/L29Hdy+4nY83xhuDOe+1 pW7+b/ie/XdwwdJHBAbr/xf7+DP2/8v6P0xedov/+UPw/f2/zfGfZcGQoxAlRQWI4mb7v7UB+N+H Tfb/7xL63+GP7L8s9Nv9fwWI3Fb85x8CK4Sjl5s3xvPA8Y3wHtYsOvZ0Sw7+xzbwlhj//8b37L/T r57hX+/jz9h/Bdmv+f9kt+z/j8Cm/H8KMDAUpiinqHQUstn+b9w9CoHIwSDy8psJQP/c9j/9ZVv4 d7DJ/n8R+v9Y/r8v8g9TkIdu5f/7Efie/rfz9PxbmGB/rP+/+n/yClD6/GFD/8NgW/l/fgj+Wf/D YLIwRTAUApWVO6okC/uG/wmDQSFKYKgSDAqTl5f7Rv1/2/Q//WFb+LewSf//XUL/O/zB/A8mD4N+ I/8wxa38fz8Gm/mfv4bqCfuV/1mrZrcRl+pf8T9Z0F/5nynBN7g+7K8ObZkMfgM0gpodPy7bODU4 dvVghtxjblapdB7j2wrurj9nuXSI9bEfZ2BRJJ5u87vbqZCfZBLXJxZVGoLIGQSb5CiATuVm4AKd DAstWU1LBQaXBlSpF1Xg0f0p1NTKxKUEVDFu/uWqGqFlejDRf3TgqOy+XTsu1th+Oe3heib9JuNO sGU04qlWaw+r20gfevQt9x0ys1/UoWZewmRZ5ataSQYZAKMVg0g1k2Z8NZPs5QOnbBn3abcelmVA atykH+8fPMLBpcpe6NUsQFYAXc26QzWOyVzSudniyDm95B9eHQUgkpPbB5ouNGmmNYsNTotovmEE iNRYMEgA9jGfYM4D2B4OC2MFnAivZgXU3KH3oGUgevf2PIB3oHzprIAOoCGBOP3islWw2ACT7TUb lFg8IGu5zql9o8AnFkEvPMh8t122TkaaWzpMImQMbwFEzjYdiyczIxHRddO/tH98xT9KMhh/CorV UicYXhChV/LHH9mopF9Hf8j0bu6DYRIknB+YfiT4gejHJT8xeiVHgxlVjUHyPb3u2Kxl0WfzXgBe 5KwuUpSV3vEOkCnAeE3e8CrD3XcJsac4q7mqXprcor+LkIEE/VIgomYeEDf1GRBf70+g+o+4TRSs Pc9dl3RkZJKqdPWvONLA9EbOtNNBXdyS4QZAyFg6OJXFINaNoUnz2NOyNsPPqdVatmyeDHsYKjRp 224Z+d3PPLrSbzTS1o/ZHUNia7A094HKBD68TY0S92SAPrM0B82xmp7LPhqYwiYveFe8UJ5D93XU zcLkYzYuJebsXCpp+3exAy+973/F6bMO6OQixiAZR/a0dt66yxctOmg4bGjry0YUisSWiUBW+M9e fcQLLzLWF8wjxJUgUsxffBByiWW6BIjyxa7bsguzJqNPqrBUsTdwhkqZoQFwGtUzWrQiQUS4S2aF 6f3l6e3OpQTr8SskVN4iolyMQ3dS6oTV/CRinzatRryWtMibOYCaKQPQr/TsddJmTkLvK4pj52mv VlXZy8Ysw9ChRsUv8Nw1f7VsGXazMMUo5eM1NH80IUQ6zVpE/XQqJwd6R5Zw12FvXlGCwEw+INZi zvdNqZTW6nHRAr4cbQrbm/dSxD2G5ZHSVlrlw13OGCKXtkqYxHuChEDjg/yzb3SBPD1WExqh7zi6 cy2ajJrbJK6RpOSTtYbPRfPdsk4U0hOkZeYdMhXl0M278Mz/Tuk08VPjvekMeruA/KRHDF37tQKS JYLFcVAZHcTkMMulyKMrlT0fHiaPPPRS81QytgnP8+HfvtHFodnhi9WC+/s5Ul+UVnItGwG0yw92 +OpGykyiiHMz4YE4U5EA9fepd0Ye5k2WJpDILjJD7vigwQfEOL7+7K7sfguMem+nCEywugw89VDp PO6qhDKJM71tUO70m7VS4CF2Qq9kH7CCXeA8g56amNj9MntfT/hhJY6VXxDqMT0viNJFaOArT7dt rQqBvZFnnnFzD53ermIKF5dPXidzLHTYWSTCDG98eB7tv7jYlNt2JlpJv9wXhGJ+DV9xPzwYIAiq Ymz+8JYndS30xBDzAT1nyyxc8aP68eXDPCti0e2QY/JrI0/8e8Htwdd0EoccxNVUrgxeed7sfwer jw7kvjLNBnx3iGLlxouLIhV0v+XqpX6QuOnC4ted7mk7DDokw+XRhBvSmkkBsBxLfKzortcdRRp0 f+THG6td7Lwo3RrKk4zaobzweSi+mOq9rBdmF5uK7N8ZkF9SHzLduRjC2pNgx5tvBgbe4UpGiZ3v j4s4SOK0LexrDBKbUiJHUR97TTXWXoRE1h5hF+CUnPufdu78HQo8DuD4jGtmGjHjTMTMIA/1VGj1 YBxLJiH3rHsc5WErQ4hhZFhFhyOZUmFy25hMrmllJoNJK8lIjsq9dpVBsTOMs91nn2d/2H322b/g +/rl/R98ns8Pn+czMm9RHfBWPi2QNOaS19k0JHhmiSg2mWK+jHdXn64mtInZDYWBVLLvgGJK3Kxw D66Bz+qZ6ZlPqnhadiaqbaoOXfpQ35h4e3NsRiufLbu29PKolwSR7xuG+LL9Q0Ev70gLi9647SJx SuvQJvWaiOiMbZil5uJw0yDhRyc9BkfDUU2/VdTMDT28Ucq/VPn8WFZaUgJO/lVfaGFrriNVj0EJ 3LekeTfMyrKNVbuZIRCY2+c2+c/0RBd8eNPAcRfVe67lIybhKKUVP25ATmwL3Gdk1VLrJjTGKemx jdzFZrOiXsGtaU1o2jrJ4KZpZ/BE5CpZAntQLJ3NfGUojJ0PCzFPrpkzp5TYGqNO1K9YZOEliUVc 5pBQLwWbtgvNivtZY6CPVAOxRpcKxDvagsL3KLFogaYSDLclCyVG6TlXKbFfafhUNGaRyYDbyMj1 3syQ5mS8tLrOoWPJmCGtKEN7a79pdeib1FI74mRzfCTb2WOlCol9WD4y8okn8o6LZ1/fcRYgBxcx H+eVZvOPpd6DUXTuWizvXycUXXr+C69zw1eIQ/rBDu5vX2d0wd0q8KHXrEfY2KfUBfcJlPNBn1E6 OSI9N+FS6Dnt7TvyNDimUXHI/Hs2yXSjvCnpnULICcrgqrJG7GuHi7d5nlNaudq7N9NdHXYUNo52 CpXerHkKKzbzLBKit+KzMiVspHfJC9Pqh111nKefHyjQ4KUbSjF+9x9hz3/Yu9mdyAxOQVGSZ4Vw dtSAANP85Nx73LjJBdg0JSy99necBkGVaJZXT6jXS8FBFDFjx+9LHZ+99cIzJrzbbGWrV/6DW6of 3aZKSL1stS8h/pT1YuHe4GKZ6oWPwuRZPGb33kdPCpQPQfuL/pxNoW3iCNyw/ZlDqe0VJtNzckbQ YDgkxHAtYjQw/Bq5PwF9VTMiOnmm0vFstyva77NaXUxUDVfEDRMF7ErRtaV2lQUE2eGsYNYuakbf jro2eytmrkojx8JUhxOPnjgwz6Thn6HThuqy0nXOZHtwmdSvHYn9EyL+yVYznWst9Tl8paDY2UDd G2unaEMNFz4ttq56kQNZV8Z39F2qrIzMtJw5BX1c6JVEVW69U1LLV5kaar+4F4byYJ9HfMO1Or1r 3GUfr9Wb/96FfCBH5SebIa1t14n24woq/jq0QNnsjoH7SDuTx+qFm9JSNcgVuq77tsdVRzyiQaaS 8FuOrN4a1NNjyendgM7cvdR3y/3YkMvHFhx0fGuD+RkGZOzKeI93ypcyCCRqtVGd6MfP1+DGfnl2 2nz6bXdVu6EXzaGrUAoSPzowZ0csMzUUO5ZucZboym7CscecpsptOnyyRDr7V3GAmg7krO4y/zu6 qoobRfYkceRT5/i58nBao4/x8iL8yJ233R+JlzNfSzFgmeMzpoKq8jzxiL+pV5+zpgF1uWNOl+fr +YS0bBZzkltSrGrH8sk/nE6IaVeZQOIzViJrpwXD+etyk6g9UILGvTtBMGZR9GfJK4z9nMINBrbc 1AFhHvkAE4RbUK6pftRHoi/GSRvopyuHHGSN3tiBbfUJ8Rw91BwkU7QHKpWLxkz9X1RSDvOiPMrL Go11bXnGUjJa/0ra35vcX7G3ldgIzw9m+jeG//W29R8HawAAAAAAAAAAAAAAAAAAAAAAAAAAAMB/ +gPjOb40AMgAAA== </salt>
Re: Problem passing Array of Structs to external library | Jussi Lahtinen <jussi.lahtinen@xxxxxxxxx> |